26 research outputs found

    Fingervein Verification using Convolutional Multi-Head Attention Network

    Full text link
    Biometric verification systems are deployed in various security-based access-control applications that require user-friendly and reliable person verification. Among the different biometric characteristics, fingervein biometrics have been extensively studied owing to their reliable verification performance. Furthermore, fingervein patterns reside inside the skin and are not visible outside; therefore, they possess inherent resistance to presentation attacks and degradation due to external factors. In this paper, we introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet. The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images. The proposed VeinAtnNet was trained on the newly constructed fingervein dataset with 300 unique fingervein patterns that were captured in multiple sessions to obtain 92 samples per unique fingervein. Extensive experiments were performed on the newly collected dataset FV-300 and the publicly available FV-USM and FV-PolyU fingervein dataset. The performance of the proposed method was compared with five state-of-the-art fingervein verification systems, indicating the efficacy of the proposed VeinAtnNet.Comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 202

    Sound-Print: Generalised Face Presentation Attack Detection using Deep Representation of Sound Echoes

    Full text link
    Facial biometrics are widely deployed in smartphone-based applications because of their usability and increased verification accuracy in unconstrained scenarios. The evolving applications of smartphone-based facial recognition have also increased Presentation Attacks (PAs), where an attacker can present a Presentation Attack Instrument (PAI) to maliciously gain access to the application. Because the materials used to generate PAI are not deterministic, the detection of unknown presentation attacks is challenging. In this paper, we present an acoustic echo-based face Presentation Attack Detection (PAD) on a smartphone in which the PAs are detected based on the reflection profiles of the transmitted signal. We propose a novel transmission signal based on the wide pulse that allows us to model the background noise before transmitting the signal and increase the Signal-to-Noise Ratio (SNR). The received signal reflections were processed to remove background noise and accurately represent reflection characteristics. The reflection profiles of the bona fide and PAs are different owing to the different reflection characteristics of the human skin and artefact materials. Extensive experiments are presented using the newly collected Acoustic Sound Echo Dataset (ASED) with 4807 samples captured from bona fide and four different types of PAIs, including print (two types), display, and silicone face-mask attacks. The obtained results indicate the robustness of the proposed method for detecting unknown face presentation attacks.Comment: Accepted in IJCB 202

    On the Influence of Ageing on Face Morph Attacks: Vulnerability and Detection

    Full text link
    Face morphing attacks have raised critical concerns as they demonstrate a new vulnerability of Face Recognition Systems (FRS), which are widely deployed in border control applications. The face morphing process uses the images from multiple data subjects and performs an image blending operation to generate a morphed image of high quality. The generated morphed image exhibits similar visual characteristics corresponding to the biometric characteristics of the data subjects that contributed to the composite image and thus making it difficult for both humans and FRS, to detect such attacks. In this paper, we report a systematic investigation on the vulnerability of the Commercial-Off-The-Shelf (COTS) FRS when morphed images under the influence of ageing are presented. To this extent, we have introduced a new morphed face dataset with ageing derived from the publicly available MORPH II face dataset, which we refer to as MorphAge dataset. The dataset has two bins based on age intervals, the first bin - MorphAge-I dataset has 1002 unique data subjects with the age variation of 1 year to 2 years while the MorphAge-II dataset consists of 516 data subjects whose age intervals are from 2 years to 5 years. To effectively evaluate the vulnerability for morphing attacks, we also introduce a new evaluation metric, namely the Fully Mated Morphed Presentation Match Rate (FMMPMR), to quantify the vulnerability effectively in a realistic scenario. Extensive experiments are carried out by using two different COTS FRS (COTS I - Cognitec and COTS II - Neurotechnology) to quantify the vulnerability with ageing. Further, we also evaluate five different Morph Attack Detection (MAD) techniques to benchmark their detection performance with ageing.Comment: Accepted in IJCB 202

    Differential Newborn Face Morphing Attack Detection using Wavelet Scatter Network

    Full text link
    Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 ×\times 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.Comment: accepted in 5th International Conference on Bio-engineering for Smart Technologies (BIO-SMART 2023

    MIPGAN -- Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

    Full text link
    Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.Comment: Revised version. Submitted to IEEE T-BIOM 202

    Detecting Finger-Vein Presentation Attacks Using 3D Shape & Diffuse Reflectance Decomposition

    Full text link
    Despite the high biometric performance, finger-vein recognition systems are vulnerable to presentation attacks (aka., spoofing attacks). In this paper, we present a new and robust approach for detecting presentation attacks on finger-vein biometric systems exploiting the 3D Shape (normal-map) and material properties (diffuse-map) of the finger. Observing the normal-map and diffuse-map exhibiting enhanced textural differences in comparison with the original finger-vein image, especially in the presence of varying illumination intensity, we propose to employ textural feature-descriptors on both of them independently. The features are subsequently used to compute a separating hyper-plane using Support Vector Machine (SVM) classifiers for the features computed from normal-maps and diffuse-maps independently. Given the scores from each classifier for normal-map and diffuse-map, we propose sum-rule based score level fusion to make detection of such presentation attack more robust. To this end, we construct a new database of finger-vein images acquired using a custom capture device with three inbuilt illuminations and validate the applicability of the proposed approach. The newly collected database consists of 936 images, which corresponds to 468 bona fide images and 468 artefact images. We establish the superiority of the proposed approach by benchmarking it with classical textural feature-descriptor applied directly on finger-vein images. The proposed approach outperforms the classical approaches by providing the Attack Presentation Classification Error Rate (APCER) & Bona fide Presentation Classification Error Rate (BPCER) of 0% compared to comparable traditional methods.Comment: This work was accepted in The 15th International Conference on SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS, 201
    corecore